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ABSTRACT: Plasmonic catalysis is based on a unique property of nobIeHsr@tql —
nanostructures to harvest electromagnetic radiation converting it into hot carriers. e
These high energy species can catalyze chemical reactions in molecules located in the ) == O Q
vicinity to surfaces of the plasmonic nanostructures. However, traditional plaspmonic AuNPs ¢
metals such as gold (Au) are useful only for a limited number of chemical reactions? The >SN——

spectrum of chemical reactions can be broadened up by coupling plasmonic and

catalytic metals, such as platinum (Pt), in one nanostructure. In this study, we use tip-

enhanced Raman spectroscopy (TERS) to probe photocatalytic properties of-gpld. .~ =
platinum nanoplates (Au@PtNPs). We found that Au@PtNPs higlelytly proto-

reduced 4-nitrobenzenethiol (4-NBT pjo-dimercaptoazobisbenzene (DMAB) with / '/ —_— !
the yield similar to the one observed for gold nanoplates (AuNPs). These Au@PtNPs Au@PtNPs Won
could be used to proto-oxidize 4-aminothiophenol (4-AFRp 4-NBT and then 4O ~____—~ © Q
NBT to DMAB, whereas photo-oxidation of 4-ATP on the surface of AuNPs directly

proceeds to DMAB.

lllumination of noble metal nanostructures by electromagnetiates of their monometallic counterparts. At the same time,
radiation induces collective oscillations of electrons at thhere is very little known about nanoscale catalytic properties
surface of nanostructute$.These collective oscillations of of such bimetallic nanostructures as well the selectivity of
electrons or localized surface plasmon resonances (LSPRs)petocatalytic reactions that are performed by them.
the underlying cause of surface-enhanced Raman scatterinfip-enhanced Raman spectroscopy (TERS) is a modern
(SERS) phenomendn'® LSPRs can decay forming hot analytical technique that provides detailed chemical informa-
carriers through direct interband, phonon-assisted intrabanibn single-molecule sensiti¢ity’ Specially, TERS provides
and geometry-assisted transifibris. These hot carriers are high spatial resolution allowing for monitoring chemical
highly energetic species that persist over a few tens @iactions in real-timg?° which may not be possible using
femtoseconds to picoseconds time SCélelot carriers can  SERS. This makes TERS perfectly suitable for elucidation of
further decay via electraglectron or electrorphonon  selectivity of photocatalytic processes on both mono- and
scattering or can populate unoccupied orbitals in moleculggnetallic nanostructurdss° Recently, our group showed
located at the close vicinity to metal surfdtes the latter  that TERS can be used to probe catalyiiieacy of 4-NBT
scenario, hot carriers caqgcatalyze chemical reactions, sucthapMAB conversion of dirent crystal phases of Au
O, and H dissociatiofi;*’ photo-oxidation of 4-amino- microplates (AUMPS}.It has been found that Au (111) has
thiophenol (4-ATP), and photoreduction of 4-nitrobenzenem,,ch higher catalytic activity comparing to Au (110) and Au
thiol (4-NBT) topp -dimercaptoazobisbenzene (DMAB}). (100) facets. It has been also found that in addition to DMAB,
Although noble metal nanostructures exhibit higierecy of 4 NBT can be converted to 4-nitrobenzenethitlate.
such catalytic reactions, their selectivity is limited. In this study, we used TERS to investigate reaction products
This problem can be overcome by the coupling of noblg photo-oxidation of 4-ATP and photoreduction of 4-NBT on
metals with catalytic metals such as palladium (Pd), rutheni surface of golglatinum nanoplates (AuU@PNPs). Our

(Ru), or platinum (Pt) in a bimetallic construct. Such ; - ]
bimetallic nanostructures exhibit a broad spectrum of catalytirc}dlngs show that AU@PINPs proto-reduce 4-NBT to DMAB

reactions and higher reaction rates relative to thefi——
monometallic counterpafts® For instance, Wang and co- Received: May 12, 2020
workers showed that Au@Pd nanostructures demonstrated™2Plished: May 15, 2020
fold enhancement of rates of Suzuki coupling in comparison to

rates of reactions thermally heated to the same température.

The researchers also reported a 2-fold increase in the reaction

yield provided by these Au@Pd nanostructures relative to the
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Figure 1.Photo reduction of 4-NBT to DMAB on AuNPs and Au@PtNPs. (a) TERS image of Au@PtNPs with a monolayer of 4-NBT (intensity
of 1339 cm! band (NQ vibration) of 4-NBT is shown in blue); (b) TERS image of DMAB on Au@PtNPs (intensity of 1395 and'1448 cm
bands N = N vibration) of DMAB is shown in red); (c) TERS image of Au@PtNPs with bgtind® = N vibrations; (d) corresponding

AFM image of Au@PtNPs.; (e) TERS image of AuNPs with a monolayer of 4-NBT; (f) TERS image of DMAB on AuNPs of DMAB; (g) TERS
image of AuNPs with both N@ndN = N vibrations; (h) corresponding AFM image of AuNPs. Typical TERS spectra of 4-NBT (i) and DMAB

() on Au@PtNPs and 4-NBT (k) and DMAB (I) on AuNPs. The TERS spectra are randomly chosen from the corresponding TERS map with tk
same laser power and acquisition time at each point. The resolution in each of TERS image is 20 nm per pixel.

with the yield similar to the one observed for AuNPs. One may wonder whether analogous photocatalytic
However, Au@PtNPs proto-oxidize 4-ArBPto 4-NBT and conversion could be achieved on AuNPs. To answer this
then 4-NBT to DMAB, whereas AuNPs instantly carry suchuestion, we used TERS to image the surface of monometallic
oxidation directly to DMAB. Thesadings suggest that Au@ AuNPs with a monolayer of 4-NBHiqure &). AuNPs had
PtNPs have higher reaction selectivity relative to thesimilar dimensions to AU@PtNP200 nm in length with
monometallic analogs. thicknesses of 600 nm. We have found that on the surface of
Au@PtNPs and AuNPs used in this study w208 nm AuUNPs, 4-NBT could be also catalyzed to DNHRI(e 1,1);
trigonal/hexagonal nanostructures with760nm in thick- however, the photoreduction took place primarily along edges
nessessigure o, Figure SlandFigure S2A monolater of 4-  of the AuNPsKigure 1,g). This high photocatalytic@ency
nitrobenzenethiol (4-NBT) was deposited on the surfaces of edges can be explained by localization of eletdriand
both Au@PtNPs and AuNPs and used as a molecule reporexcitation of plasmon modes along the edges and corners of
in the TERS experiments. TERS measurements weneble metal nanostructurésn contrast, such edgeeet is
conducted on AIST-NT-HORIBA system equipped with aabsent on Au@PtNPs, which suggests more even distribution
633 nm CW laser. The laser was brought to the sample incé electric eld in these bimetallic nanostructties.
side-illumination (45angle) geometry; laser power used Noble metal nanostructures have both proto-reduction and
throughout the TERS experiments was approximatdly.30 photo-oxidation properties. Tian group reported that 4-ATP
TERS probes were fabricated through metal deposition of ¢€an be photocatalytically oxidized to DMAB by Au nano-
nm of Au on the Si tip (Appnano (Mountain View, CA), 1 kHz particles (AuNPsf*** Following on this discovery, we used
scanning frequency). The tip-fabrication procedure iFERS to investigate nanoscale photo-oxidation properties of
described in detail in th8upporting InformationTERS both Au@PtNPs and AuNPs with monolater of 4-ATP on
spectrum of 4-NBT has three distinct vibrational bands akeir surfaceHigure . Raman spectrum of 4-ATP showed
ngerprint at 1083, 1339, and 1576 c(frigure i). We the NH, band at 1591 cm (Figure 2k), which agrees well
found that on the surface of Au@PtNPs, 4-NBT could bevith the previously reported spectra of this moléélM/e
photochemically reduced fmp -dimercaptoazobisbenzene found that 4-ATP become spontaneously oxidized to DMAB
(DMAB), which features a doublet of peaks at 1397 andn the surface of AuNR-igure b,c). Similar to 4-NBT
1441 cm? (Figure ). Nanoscale TER imaging of Au@PtNPs reduction, the sides and corners of AuNPs exhibited the
(Figure a,b) revealed random spots of DMAB formationstrongest activity of 4-ATP to DMAB photo-oxidation.
observed at both the edges and terraces of the bimetalliowever, we found that the photo-oxidation of 4-ATP on
nanostructures-{gure t). the surface of Au@PtNPs did not result in DMAB formation.
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Figure 2.Photo oxidation of 4-ATP to DMAB and 4-NBT. (a) TERS image of 4-ATP and (b) DMAB, as well as (c) TERS image of AuUNPs with
both NG, andN = N vibrations; (d) corresponding AFM image of AuNPs; (e) TERS image of 4-ATP on Au@PtNPs; (f) TERS image of 4-NBT
on Au@PtNPs; (g) TERS image of Au@PtNPs from the overlappingasfd\#0, vibrations. Intensity of 1590 érband (NH, vibration) of

4-ATP is shown in green, intensity of 1339 trland (NG vibration) of 4-NBT is shown in blue, intensity of 1397, 1441bamd (azo

vibration) of DMAB is shown in red. (h) CorrespondingAFM image of Au@Pt )Psyical TERS spectra extracted from chemical maps on
AuNPs (parts ac) showing presence of 4-ATP (green), DMAB (red)) (kypical TERS spectra extracted from chemical maps on AuNPs
(parts e g) showing presence of 4-ATP (green), and 4-NBT (blue). The resolution in each of TERS image is 20 nm per pixel with 0.5 s acquisiti
time.

Instead, we observed 4-ATP to 4-NBT conveFsipng 2 ndings also suggest that a higher intensity of eletdric
h). Nanoscale imaging of the active sites of 4-ATP photoequired to enable the photo-oxidation of 4-ATP to DMAB
oxidation revealed that similar to AuNPs, this process wealative to the intensity of the electetd necessary for the
taking place at the edges and tips of these bimetallghotoreduction of 4-NBT to DMABjgure 4
nanostructures. Thus, edges and corners of Au@PtNPs ar&his hypothesis is supported by the experimental evidence
more active in photo-oxidation, whereas the whole surfacereported by Wang and co-workérShe researchers have
these nanostructures has nearly equal activity in photehown that such selectivity of 4-ATP photo-oxidation could be
reduction (4-NBT to DMAB reduction). achieved via presence of titanium oxide,( Ti@noparticles

This result was rather surprising because Au@PtNPs cowld the surface of AuNPs (BiCAUNPSs). It was found that
oxidize 4-NBT to DMAB, as was discussed above. We foundder UV illumination, TiD AuNPs photo-oxidize 4-ATP to
that an increase of the tip exposure time on the surface of AMGNBT. If UV illumination was removed, 4-NBT molecules
PtNPs resulted in the photo-oxidation of 4-NBT to DMAB,that were present on the surface of, TKUNPs appeared to
Figure 3 By other means, more energy is required tde spontaneously further photo-oxidized to DMAB. At the
photoconvert 4-ATP to DMAB on the surface of Au@PtNPsame time, such selectivity could not be achieved for 4-NBT to
in comparison to that of their monometallic analogs (AuNPsDMAB formation which was occurring instantaneously on the
TERS imaging also revealed that 4-NBT molecules located surface of both TiOD AUNPs and their monometallic analogs
the perimeter of Au@PtNPs were photo-oxidized into DMABAUNPS). Wang and coauthors proposed that UV-driven
as well as some 4-ATP located on the terraces of theselectivity of Ti@ AuNPs could be explained by hot-electron
bimetallic nanostructures. Thesdings can be explained by pairing with holes in TiOD We expect that the underlying
LSPRs damping in such bimetallic nanostructures due physical principles that determine catalytic selectivity obe-
increased probability of interband transitibfidThe last can  served on TiO2-AuNPs and Au@PtNPs arerefit.
be attributed to close energy levels of d-bands and Fermi lev&tiditional experiments are required for a direct comparison
in Pt (Figure SB Such LSPRs damping has been previouslgf these catalytic systems upon identical environmental/
reported for Au@Pd nanorods and Au@Pt nanopgf‘ﬁéles. experimental conditions, which is beyond the scope of current
At the same time, no LSPR damping is taking place omork.
monometallic nanostructures (AuNPs), which explains their Using TERS, we have systematically investigated photo-
so-called gap-mode enhancememettein TERS. These catalytic properties of both bi- and monometallic nanostruc-
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AuNPs. One can expect that theiency and selectivity of
such photo-oxidation processes are strongly correlated with the
metal composition of these nanostructures. We expect that our

nding will inspire the rational design of new generation of
mono/bimetallic nanomaterials toward controllable, selective,
and highly ecient catalysis.
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